MIFARE is the NXP Semiconductors-owned trademark of a series of chips widely used in contactless smart cards and proximity cards.
First deployed in 1994, MIFARE ICs were originally developed for automated fare collection in public transport, but that was just the beginning. Since then, MIFARE continues to pave the way how millions of people around the world access services, and enables contactless transit, payment, and access experiences for everyone, independent of location and time. https://www.mifare.net/en/
The MFRC522 is a highly integrated reader/writer for contactless communication at 13.56 MHz. The MFRC522 reader supports ISO 14443A / MIFARE® mode.
Various host interfaces are implemented:
An interface compatible to an SPI interface enables a high-speed serial communication between the MFRC522 and a μ-Controller for the communication. The implemented SPI compatible interface is according to a standard SPI interface.
The MFRC522 acts as a slave during the SPI communication. The SPI clock SCK has to be generated by the master. Data communication from the master to the slave uses the Line MOSI. Line MISO is used to send data back from the MFRC522 to the master.
The internal UART interface is compatible to an RS232 serial interface. The default transfer speed is 9.6 kbit/s.
An Inter IC (I2C) bus interface is supported to enable a low cost, low pin count serial bus interface to the host. The implemented I2C interface is implemented according the NXP Semiconductors I2C interface specification, rev. 2.1, January 2000.
The implemented interface can only act in Slave mode.
Therefore no clock generation and access arbitration is implemented in the MFRC522. SDA is a bi-directional line, connected to a positive supply voltage via a current-source or a pull-up resistor. Both lines SDA and SCL are set to HIGH level if no data is transmitted. Data on the I2C-bus can be transferred at data rates of up to 100 kbit/s in Standard mode, up to 400 kbit/s in the Fast mode or up to 3.4 Mbit/s in the High-speed mode.
An 64 × 8-bit FIFO buffer is implemented in the MFRC522. It buffers the input and output data stream between the host and the internal state machine of the MFRC522. Thus, it is possible to handle data streams with lengths of up to 64 bytes without taking timing constraints into account.
The behavior is determined by a state machine capable to perform a certain set of commands. By writing the according command-code to register CommandReg the command is executed. Arguments and/or data necessary to process a command are exchanged via the FIFO buffer.
Command | Command code | Action |
---|---|---|
Idle | 0000 | No action; cancels current command execution. |
Mem | 0001 | Stores 25 byte into the internal buffer |
Generate RandomID | 0010 | Generates a 10 byte random ID number |
CalcCRC | 0011 | Activates the CRC co-processor or performs a selftest. |
Transmit | 0100 | Transmits data from the FIFO buffer. |
NoCmd Change | 0111 | No command change. This command can be used to modify different bits in the command register without touching the command. E.g. Power-down. |
Receive | 1000 | Activates the receiver circuitry. |
Transceive | 1100 | Transmits data from FIFO buffer to the antenna and activates automatically the receiver after transmission. |
. | 1101 | Reserved for further use |
MFAuthent | 1110 | Performs the MIFARE® standard authentication as a reader |
Soft Reset | 1111 | Resets the MFRC522 |
ISO/IEC 14443 Identification cards -- Contactless integrated circuit cards -- Proximity cards is an international standard that defines proximity cards used for identification, and the transmission protocols for communicating with it.
Parts:
- ISO/IEC 14443-1:2016 Part 1: Physical characteristics
- ISO/IEC 14443-2:2016 Part 2: Radio frequency power and signal interface
- ISO/IEC 14443-3:2016 Part 3: Initialization and anticollision
- ISO/IEC 14443-4:2016 Part 4: Transmission protocol
Types
Cards may be Type A and Type B, both of which communicate via radio at 13.56 MHz (RFID HF). The main differences between these types concern modulation methods, coding schemes (Part 2) and protocol initialization procedures (Part 3). Both Type A and Type B cards use the same transmission protocol (described in Part 4). The transmission protocol specifies data block exchange and related mechanisms:
- data block chaining
- waiting time extension
- multi-activation
ISO/IEC 14443 uses following terms for components:
- PCD: proximity coupling device (the card reader)
- PICC: proximity integrated circuit card
Notable implementations
- MIFARE cards (partial or full implementation, depending on product)
- Biometric passports
- EMV payment cards (PayPass, Visa payWave, ExpressPay)
- National identity cards in the European Economic Area
- Near Field Communication is based on in part, and is compatible with, ISO/IEC 14443
- Calypso, open security standard for transit fare collection systems
- CIPURSE, open security standard for transit fare collection systems
The MIFARE brand name (derived from the term MIKRON FARE Collection and created by the company MIKRON) covers four families of contactless cards:
the wiring and the coding
The RFID RC522 is a very low-cost RFID (Radio-frequency identification) reader and writer that is based on the MFRC522 microcontroller. This microcontroller provides its data through the SPI protocol and works by creating a 13.56MHz electromagnetic field that it uses to communicate with the RFID tags.
On your RFID RC522 you will notice that there are 8 possible connections on it, these being
Proposed connection
RFID RC522 | GPIO |
---|---|
SDA | Pin 24 |
SCK | Pin 23 |
MOSI | Pin 19 |
MISO | Pin 21 |
IRQ | Not connected |
GND | Pin 6 |
RST | Pin 22 |
3.3V | Pin 1 |
Source https://pimylifeup.com/raspberry-pi-rfid-rc522/
SPI python library not available by default
Reference https://github.com/simonmonk/clever_card_kit
see the documentation https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
python2.7-dev
sudo apt-get install python2.7-dev
SPI-Py
cd ~
git clone https://github.com/lthiery/SPI-Py.git
cd ~/SPI-Py
sudo python setup.py install
cd ~
git clone https://github.com/pimylifeup/MFRC522-python.git
#!/usr/bin/env python
import RPi.GPIO as GPIO
import SimpleMFRC522
reader = SimpleMFRC522.SimpleMFRC522()
try:
text = raw_input('New data:')
print("Now place your tag to write")
reader.write(text)
print("Written")
finally:
GPIO.cleanup()
SimpleMFRC522.py
# Code by Simon Monk https://github.com/simonmonk/
import MFRC522
import RPi.GPIO as GPIO
class SimpleMFRC522:
READER = None;
KEY = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
BLOCK_ADDRS = [8, 9, 10]
def __init__(self):
self.READER = MFRC522.MFRC522()
def read(self):
id, text = self.read_no_block()
while not id:
id, text = self.read_no_block()
return id, text
def read_id(self):
id = self.read_id_no_block()
while not id:
id = self.read_id_no_block()
return id
def read_id_no_block(self):
(status, TagType) = self.READER.MFRC522_Request(self.READER.PICC_REQIDL)
if status != self.READER.MI_OK:
return None, None
(status, uid) = self.READER.MFRC522_Anticoll()
if status != self.READER.MI_OK:
return None, None
return self.uid_to_num(uid)
def read_no_block(self):
(status, TagType) = self.READER.MFRC522_Request(self.READER.PICC_REQIDL)
if status != self.READER.MI_OK:
return None, None
(status, uid) = self.READER.MFRC522_Anticoll()
if status != self.READER.MI_OK:
return None, None
id = self.uid_to_num(uid)
self.READER.MFRC522_SelectTag(uid)
status = self.READER.MFRC522_Auth(self.READER.PICC_AUTHENT1A, 11, self.KEY, uid)
data = []
text_read = ''
if status == self.READER.MI_OK:
for block_num in self.BLOCK_ADDRS:
block = self.READER.MFRC522_Read(block_num)
if block:
data += block
if data:
text_read = ''.join(chr(i) for i in data)
self.READER.MFRC522_StopCrypto1()
return id, text_read
def write(self, text):
id, text_in = self.write_no_block(text)
while not id:
id, text_in = self.write_no_block(text)
return id, text_in
def write_no_block(self, text):
(status, TagType) = self.READER.MFRC522_Request(self.READER.PICC_REQIDL)
if status != self.READER.MI_OK:
return None, None
(status, uid) = self.READER.MFRC522_Anticoll()
if status != self.READER.MI_OK:
return None, None
id = self.uid_to_num(uid)
self.READER.MFRC522_SelectTag(uid)
status = self.READER.MFRC522_Auth(self.READER.PICC_AUTHENT1A, 11, self.KEY, uid)
self.READER.MFRC522_Read(11)
if status == self.READER.MI_OK:
data = bytearray()
data.extend(bytearray(text.ljust(len(self.BLOCK_ADDRS) * 16).encode('ascii')))
i = 0
for block_num in self.BLOCK_ADDRS:
self.READER.MFRC522_Write(block_num, data[(i*16):(i+1)*16])
i += 1
self.READER.MFRC522_StopCrypto1()
return id, text[0:(len(self.BLOCK_ADDRS) * 16)]
def uid_to_num(self, uid):
n = 0
for i in range(0, 5):
n = n * 256 + uid[i]
return n
MFRC522.py
# Modifications made by Simon Monk https://github.com/simonmonk/
# Modified from: https://github.com/mxgxw/MFRC522-python/blob/master/MFRC522.py
# Trace commented out and the Read and Write methods modified to return values.
# Also changed to use the Broadcom pin mode
import RPi.GPIO as GPIO
import spi
import signal
import time
class MFRC522:
NRSTPD = 25
MAX_LEN = 16
PCD_IDLE = 0x00
PCD_AUTHENT = 0x0E
PCD_RECEIVE = 0x08
PCD_TRANSMIT = 0x04
PCD_TRANSCEIVE = 0x0C
PCD_RESETPHASE = 0x0F
PCD_CALCCRC = 0x03
PICC_REQIDL = 0x26
PICC_REQALL = 0x52
PICC_ANTICOLL = 0x93
PICC_SElECTTAG = 0x93
PICC_AUTHENT1A = 0x60
PICC_AUTHENT1B = 0x61
PICC_READ = 0x30
PICC_WRITE = 0xA0
PICC_DECREMENT = 0xC0
PICC_INCREMENT = 0xC1
PICC_RESTORE = 0xC2
PICC_TRANSFER = 0xB0
PICC_HALT = 0x50
MI_OK = 0
MI_NOTAGERR = 1
MI_ERR = 2
Reserved00 = 0x00
CommandReg = 0x01
CommIEnReg = 0x02
DivlEnReg = 0x03
CommIrqReg = 0x04
DivIrqReg = 0x05
ErrorReg = 0x06
Status1Reg = 0x07
Status2Reg = 0x08
FIFODataReg = 0x09
FIFOLevelReg = 0x0A
WaterLevelReg = 0x0B
ControlReg = 0x0C
BitFramingReg = 0x0D
CollReg = 0x0E
Reserved01 = 0x0F
Reserved10 = 0x10
ModeReg = 0x11
TxModeReg = 0x12
RxModeReg = 0x13
TxControlReg = 0x14
TxAutoReg = 0x15
TxSelReg = 0x16
RxSelReg = 0x17
RxThresholdReg = 0x18
DemodReg = 0x19
Reserved11 = 0x1A
Reserved12 = 0x1B
MifareReg = 0x1C
Reserved13 = 0x1D
Reserved14 = 0x1E
SerialSpeedReg = 0x1F
Reserved20 = 0x20
CRCResultRegM = 0x21
CRCResultRegL = 0x22
Reserved21 = 0x23
ModWidthReg = 0x24
Reserved22 = 0x25
RFCfgReg = 0x26
GsNReg = 0x27
CWGsPReg = 0x28
ModGsPReg = 0x29
TModeReg = 0x2A
TPrescalerReg = 0x2B
TReloadRegH = 0x2C
TReloadRegL = 0x2D
TCounterValueRegH = 0x2E
TCounterValueRegL = 0x2F
Reserved30 = 0x30
TestSel1Reg = 0x31
TestSel2Reg = 0x32
TestPinEnReg = 0x33
TestPinValueReg = 0x34
TestBusReg = 0x35
AutoTestReg = 0x36
VersionReg = 0x37
AnalogTestReg = 0x38
TestDAC1Reg = 0x39
TestDAC2Reg = 0x3A
TestADCReg = 0x3B
Reserved31 = 0x3C
Reserved32 = 0x3D
Reserved33 = 0x3E
Reserved34 = 0x3F
serNum = []
def __init__(self, dev='/dev/spidev0.0', spd=1000000):
spi.openSPI(device=dev,speed=spd)
GPIO.setmode(GPIO.BCM)
GPIO.setup(25, GPIO.OUT)
GPIO.output(self.NRSTPD, 1)
self.MFRC522_Init()
def MFRC522_Reset(self):
self.Write_MFRC522(self.CommandReg, self.PCD_RESETPHASE)
def Write_MFRC522(self, addr, val):
spi.transfer(((addr<<1)&0x7E,val))
def Read_MFRC522(self, addr):
val = spi.transfer((((addr<<1)&0x7E) | 0x80,0))
return val[1]
def SetBitMask(self, reg, mask):
tmp = self.Read_MFRC522(reg)
self.Write_MFRC522(reg, tmp | mask)
def ClearBitMask(self, reg, mask):
tmp = self.Read_MFRC522(reg);
self.Write_MFRC522(reg, tmp & (~mask))
def AntennaOn(self):
temp = self.Read_MFRC522(self.TxControlReg)
if(~(temp & 0x03)):
self.SetBitMask(self.TxControlReg, 0x03)
def AntennaOff(self):
self.ClearBitMask(self.TxControlReg, 0x03)
def MFRC522_ToCard(self,command,sendData):
backData = []
backLen = 0
status = self.MI_ERR
irqEn = 0x00
waitIRq = 0x00
lastBits = None
n = 0
i = 0
if command == self.PCD_AUTHENT:
irqEn = 0x12
waitIRq = 0x10
if command == self.PCD_TRANSCEIVE:
irqEn = 0x77
waitIRq = 0x30
self.Write_MFRC522(self.CommIEnReg, irqEn|0x80)
self.ClearBitMask(self.CommIrqReg, 0x80)
self.SetBitMask(self.FIFOLevelReg, 0x80)
self.Write_MFRC522(self.CommandReg, self.PCD_IDLE);
while(i<len(sendData)):
self.Write_MFRC522(self.FIFODataReg, sendData[i])
i = i+1
self.Write_MFRC522(self.CommandReg, command)
if command == self.PCD_TRANSCEIVE:
self.SetBitMask(self.BitFramingReg, 0x80)
i = 2000
while True:
n = self.Read_MFRC522(self.CommIrqReg)
i = i - 1
if ~((i!=0) and ~(n&0x01) and ~(n&waitIRq)):
break
self.ClearBitMask(self.BitFramingReg, 0x80)
if i != 0:
if (self.Read_MFRC522(self.ErrorReg) & 0x1B)==0x00:
status = self.MI_OK
if n & irqEn & 0x01:
status = self.MI_NOTAGERR
if command == self.PCD_TRANSCEIVE:
n = self.Read_MFRC522(self.FIFOLevelReg)
lastBits = self.Read_MFRC522(self.ControlReg) & 0x07
if lastBits != 0:
backLen = (n-1)*8 + lastBits
else:
backLen = n*8
if n == 0:
n = 1
if n > self.MAX_LEN:
n = self.MAX_LEN
i = 0
while i<n:
backData.append(self.Read_MFRC522(self.FIFODataReg))
i = i + 1;
else:
status = self.MI_ERR
return (status,backData,backLen)
def MFRC522_Request(self, reqMode):
status = None
backBits = None
TagType = []
self.Write_MFRC522(self.BitFramingReg, 0x07)
TagType.append(reqMode);
(status,backData,backBits) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE, TagType)
if ((status != self.MI_OK) | (backBits != 0x10)):
status = self.MI_ERR
return (status,backBits)
def MFRC522_Anticoll(self):
backData = []
serNumCheck = 0
serNum = []
self.Write_MFRC522(self.BitFramingReg, 0x00)
serNum.append(self.PICC_ANTICOLL)
serNum.append(0x20)
(status,backData,backBits) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE,serNum)
if(status == self.MI_OK):
i = 0
if len(backData)==5:
while i<4:
serNumCheck = serNumCheck ^ backData[i]
i = i + 1
if serNumCheck != backData[i]:
status = self.MI_ERR
else:
status = self.MI_ERR
return (status,backData)
def CalulateCRC(self, pIndata):
self.ClearBitMask(self.DivIrqReg, 0x04)
self.SetBitMask(self.FIFOLevelReg, 0x80);
i = 0
while i<len(pIndata):
self.Write_MFRC522(self.FIFODataReg, pIndata[i])
i = i + 1
self.Write_MFRC522(self.CommandReg, self.PCD_CALCCRC)
i = 0xFF
while True:
n = self.Read_MFRC522(self.DivIrqReg)
i = i - 1
if not ((i != 0) and not (n&0x04)):
break
pOutData = []
pOutData.append(self.Read_MFRC522(self.CRCResultRegL))
pOutData.append(self.Read_MFRC522(self.CRCResultRegM))
return pOutData
def MFRC522_SelectTag(self, serNum):
backData = []
buf = []
buf.append(self.PICC_SElECTTAG)
buf.append(0x70)
i = 0
while i<5:
buf.append(serNum[i])
i = i + 1
pOut = self.CalulateCRC(buf)
buf.append(pOut[0])
buf.append(pOut[1])
(status, backData, backLen) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE, buf)
if (status == self.MI_OK) and (backLen == 0x18):
#print "Size: " + str(backData[0])
return backData[0]
else:
return 0
def MFRC522_Auth(self, authMode, BlockAddr, Sectorkey, serNum):
buff = []
# First byte should be the authMode (A or B)
buff.append(authMode)
# Second byte is the trailerBlock (usually 7)
buff.append(BlockAddr)
# Now we need to append the authKey which usually is 6 bytes of 0xFF
i = 0
while(i < len(Sectorkey)):
buff.append(Sectorkey[i])
i = i + 1
i = 0
# Next we append the first 4 bytes of the UID
while(i < 4):
buff.append(serNum[i])
i = i +1
# Now we start the authentication itself
(status, backData, backLen) = self.MFRC522_ToCard(self.PCD_AUTHENT,buff)
# Check if an error occurred
if not(status == self.MI_OK):
print("AUTH ERROR!!")
if not (self.Read_MFRC522(self.Status2Reg) & 0x08) != 0:
print("AUTH ERROR(status2reg & 0x08) != 0")
# Return the status
return status
def MFRC522_StopCrypto1(self):
self.ClearBitMask(self.Status2Reg, 0x08)
def MFRC522_Read(self, blockAddr):
recvData = []
recvData.append(self.PICC_READ)
recvData.append(blockAddr)
pOut = self.CalulateCRC(recvData)
recvData.append(pOut[0])
recvData.append(pOut[1])
(status, backData, backLen) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE, recvData)
if not(status == self.MI_OK):
print("Error while reading!")
i = 0
if len(backData) == 16:
return backData
else:
return None
def MFRC522_Write(self, blockAddr, writeData):
buff = []
buff.append(self.PICC_WRITE)
buff.append(blockAddr)
crc = self.CalulateCRC(buff)
buff.append(crc[0])
buff.append(crc[1])
(status, backData, backLen) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE, buff)
if not(status == self.MI_OK) or not(backLen == 4) or not((backData[0] & 0x0F) == 0x0A):
status = self.MI_ERR
#print str(backLen)+" backdata &0x0F == 0x0A "+str(backData[0]&0x0F)
if status == self.MI_OK:
i = 0
buf = []
while i < 16:
buf.append(writeData[i])
i = i + 1
crc = self.CalulateCRC(buf)
buf.append(crc[0])
buf.append(crc[1])
(status, backData, backLen) = self.MFRC522_ToCard(self.PCD_TRANSCEIVE,buf)
if not(status == self.MI_OK) or not(backLen == 4) or not((backData[0] & 0x0F) == 0x0A):
print("Error while writing")
# if status == self.MI_OK:
# print "Data written"
def MFRC522_DumpClassic1K(self, key, uid):
i = 0
while i < 64:
status = self.MFRC522_Auth(self.PICC_AUTHENT1A, i, key, uid)
# Check if authenticated
if status == self.MI_OK:
self.MFRC522_Read(i)
else:
print("Authentication error")
i = i+1
def MFRC522_Init(self):
GPIO.output(self.NRSTPD, 1)
self.MFRC522_Reset();
self.Write_MFRC522(self.TModeReg, 0x8D)
self.Write_MFRC522(self.TPrescalerReg, 0x3E)
self.Write_MFRC522(self.TReloadRegL, 30)
self.Write_MFRC522(self.TReloadRegH, 0)
self.Write_MFRC522(self.TxAutoReg, 0x40)
self.Write_MFRC522(self.ModeReg, 0x3D)
self.AntennaOn()
#!/usr/bin/env python
import RPi.GPIO as GPIO
import SimpleMFRC522
reader = SimpleMFRC522.SimpleMFRC522()
try:
id, text = reader.read()
print(id)
print(text)
finally:
GPIO.cleanup()